Reply))) problems of radiometric dating consider

Posted by: Faemuro Posted on: 20.08.2020

Most people accept the current old-earth OE age estimate of around 4. This age is obtained from radiometric dating and is assumed by evolutionists to provide a sufficiently long time-frame for Darwinian evolution. And OE Christians theistic evolutionists see no problem with this dating whilst still accepting biblical creation, see Radiometric Dating - A Christian Perspective. This is the crucial point: it is claimed by some that an old earth supports evolutionary theory and by implication removes the need for biblical creation. Some claim Genesis in particular, and the Bible in general looks mythical from this standpoint. A full discussion of the topic must therefore include the current scientific challenge to the OE concept. This challenge is mainly headed by Creationism which teaches a young-earth YE theory.

At successively lower temperature, other minerals begin to crystallize as shown in Figure 3. As the crystallization process continues, the composition of the melt liquid portion of a magma, excluding any solid material continually changes. For example, at the stage when about 50 percent of the magma has solidified, the melt will be greatly depleted in iron, magnesium, and calcium, because these elements are found in the earliest formed minerals.

But at the same time, it will be enriched in the elements contained in the later forming minerals, namely sodium and potassium. Further, the silicon content of the melt becomes enriched toward the latter stages of crystallization. Bowen also demonstrated that if a mineral remained in the melt after it had crystallized, it would react with the remaining melt and produce the next mineral in the sequence shown in Figure 3.

Final, problems of radiometric dating matchless

For this reason, this arrangement of minerals became known as Bowen's reaction series. On the upper left branch of this reaction series, olivine, the first mineral to form, Ml] react with the remaining melt to become pyroxene.

This reaction will continue until the last mineral in the series, biotite mica, is formed. This left branch is called a discontinuous reaction series because each mineral has a different crystalline structure.

Recall that olivine is composed of a single tetrahedra and that the other minerals in this sequence are composed of single chains, double chains, and sheet structures, respectively. Ordinarily, these reactions are not complete so that various amounts of each of these minerals may exist at any given time. The right branch of the reaction series is a continuum in which the earliest formed calcium-rich feldspar crystals react with the sodium ions contained in the melt to become progressively more sodium rich.

Oftentimes the rate of cooling occurs rapidly enough to prohibit the complete transformation of calcium-rich feldspar into sodium-rich feldspar.

In these instances, the feldspar crystals will have calcium-rich interiors surrounded by zones that are progressively richer in sodium. During the last stage of crystallization, after most of the magma has solidified, the remaining melt will form the minerals quartz, muscovite mica, and potassium feldspar. Although these minerals crystallize in the order shown, this sequence is not a true reaction series. Bowen demonstrated that minerals crystallize from magma in a systematic fashion.

But how does Bowen's reaction series account for the great diversity of igneous rocks? It appears that at one or more stages in the crystallization process, a separation of the solid and liquid components of a magma frequently occurs.

This can happen, for example, if the earlier formed minerals are heavier than the liquid portion and settle to the bottom of the magma chamber as shown in Figure 3.

This settling is thought to occur frequently with the dark silicates, such as olivine. When the remaining melt crystallizes, either in place or in a new location if it migrates out of the chamber, it will form a rock with a chemical composition much different from the original magma Figure 3.

In many instances the melt which has migrated from the initial magma chamber will undergo further segregation. As crystallization progresses in the " new" magma, the solid particles may accumulate into rocklike masses surrounded by pockets of the still molten material. It is very likely that some of this melt will be squeezed from the mixture into the cracks which develop in the surrounding rock. This process will generate an igneous rock of yet another composition. The process involving the segregation of minerals by differential crystallization an separation is called fractional crystallization.

At any stage in the crystallization process the melt might be separated from the solid portion of the magma. Consequently, fractional crystallization can produce igneous rocks having a wide range of compositions. Bowen successfully demonstrated that through fractional crystallization one magma can generate several different igneous rocks. However, more recent work has indicated that this process cannot account for the relative quantities of the various rock types known to exist.

Although more than one rock type can be generated from a single magma, apparently other mechanisms also exist to generate magmas of quite varied chemical compositions. We will examine some of these mechanisms at the end of the next chapter. Separation of minerals by fractional crystallization. Illustration of how the earliest formed minerals can be separated from a magma by settling. The remaining melt could migrate to a number of different locations and, upon further crystallization, generate rocks having a composition much different from the parent magma.

Faure discusses fractional crystallization relating to U and Th in his book p. These values may be taken as an indication of the very low abundance of these elements in the mantle and crust of the Earth.

In the course of partial melting and fractional crystallization of magma, U and Th are concentrated in the liquid phase and become incorporated into the more silica-rich products. For that reason, igneous rocks of granitic composition are strongly enriched in U and Th compared to rocks of basaltic or ultramafic composition.

Progressive geochemical differentiation of the upper mantle of the Earth has resulted in the concentration of U and Th into the rocks of the continental crust compared to those of the upper mantle. The concentration of Pb is usually so much higher than U, that a 2- to 3-fold increase of U doesn't change the percent composition much e.

Finally, we have a third quotation from Elaine G. Kennedy in Geoscience Reports, SpringNo. If this occurs, initial volcanic eruptions would have a preponderance of daughter products relative to the parent isotopes. Such a distribution would give the appearance of age.

remarkable, rather valuable

As the magma chamber is depleted in daughter products, subsequent lava flows and ash beds would have younger dates. Such a scenario does not answer all of the questions or solve all of the problems that radiometric dating poses for those who believe the Genesis account of Creation and the Flood.

It does suggest at least one ct of the problem that could be researched more thoroughly. So we have two kinds of processes taking place. There are those processes taking place when lava solidifies and various minerals crystallize out at different times. There are also processes taking place within a magma chamber that can cause differences in the composition of the magma from the top to the bottom of the chamber, since one might expect the temperature at the top to be cooler.

Both kinds of processes can influence radiometric dates. In addition, the magma chamber would be expected to be cooler all around its borders, both at the top and the bottom as well as in the horizontal extremities, and these effects must also be taken into account. For example, heavier substances will tend to sink to the bottom of a magma chamber. Also, substances with a higher melting point will tend to crystallize out at the top of a magma chamber and fall, since it will be cooler at the top.

These substances will then fall to the lower portion of the magma chamber, where it is hotter, and remelt. This will make the composition of the magma different at the top and bottom of the chamber.

amusing opinion You

This could influence radiometric dates. This mechanism was suggested by Jon Covey and others. The solubility of various substances in the magma also could be a function of temperature, and have an influence on the composition of the magma at the top and bottom of the magma chamber. Finally, minerals that crystallize at the top of the chamber and fall may tend to incorporate other substances, and so these other substances will also tend to have a change in concentration from the top to the bottom of the magma chamber.

There are quite a number of mechanisms in operation in a magma chamber. I count at least three so far - sorting by density, sorting by melting point, and sorting by how easily something is incorporated into minerals that form at the top of a magma chamber. Then you have to remember that sometimes one has repeated melting and solidification, introducing more complications. There is also a fourth mechanism - differences in solubilities.

Young-earth creationists believe, on the basis of what they read in the Bible, that the Earth is 6, years old; this is the core reason that they try to undermine the validity of radiometric dating and this is why they go to the absurd length of positing accelerated rates of radiometric decay. Some of the problems associated with K-Ar dating are Excess argon. This is only a problem when dating very young rocks or in dating whole rocks instead of mineral separates.

How anyone can keep track of this all is a mystery to me, especially with the difficulties encountered in exploring magma chambers. These will be definite factors that will change relative concentrations of parent and daughter isotopes in some way, and call into question the reliability of radiometric dating.

In fact, I think this is a very telling argument against radiometric dating. Another possibility to keep in mind is that lead becomes gaseous at low temperatures, and would be gaseous in magma if it were not for the extreme pressures deep in the earth. It also becomes very mobile when hot. These processes could influence the distribution of lead in magma chambers. The magnesium and iron rich minerals come from the mantle subducted oceanic plateswhile granite comes from continental sediments crustal rock.

The mantle part solidifies first, and is rich in magnesium, iron, and calcium. So it is reasonable to expect that initially, the magma is rich in iron, magnesium, and calcium and poor in uranium, thorium, sodium, and potassium. Later on the magma is poor in iron, magnesium, and calcium and rich in uranium, thorium, sodium, and potassium.

It doesn't say which class lead is in. But lead is a metal, and to me it looks more likely that lead would concentrate along with the iron. If this is so, the magma would initially be poor in thorium and uranium and rich in lead, and as it cooled it would become rich in thorium and uranium and poor in lead.

Thus its radiometric age would tend to decrease rapidly with time, and lava emitted later would tend to look younger. Another point is that of time. Suppose that the uranium does come to the top by whatever reason.

Perhaps magma that is uranium rich tends to be lighter than other magma. Or maybe the uranium poor rocks crystallize out first and the remaining magma is enriched in uranium. Would this cause trouble for our explanation? Not necessarily. It depends how fast it happened. Some information from the book Uranium Geochemistry, Mineralogy, Geology provided by Jon Covey gives us evidence that fractionation processes are making radiometric dates much, much too old.

opinion you are

The half life of U is 4. Thus radium is decaying 3 million times as fast as U At equilibrium, which should be attained inyears for this decay series, we should expect to have 3 million times as much U as radium to equalize the amount of daughter produced.

Cortini says geologists discovered that ten times more Ra than the equilibrium value was present in rocks from Vesuvius. They found similar excess radium at Mount St. Helens, Vulcanello, and Lipari and other volcanic sites.

The only place where radioactive equilibrium of the U series exists in zero age lavas is in Hawiian rocks. We need to consider the implications of this for radiometric dating. How is this excess of radium being produced? This radium cannot be the result of decay of uranium, since there is far too much of it. Either it is the result of an unknown decay process, or it is the result of fractionation which is greatly increasing the concentration of radium or greatly decreasing the concentration of uranium.

Thus only a small fraction of the radium present in the lava at most 10 percent is the result of decay of the uranium in the lava. This is interesting because both radium and lead are daughter products of uranium. If similar fractionation processes are operating for lead, this would mean that only a small fraction of the lead is the result of decay from the parent uranium, implying that the U-Pb radiometric dates are much, much too old.

Cortini, in an article appearing in the Journal of Volcanology and Geothermal Research also suggests this possibility.

Problems of radiometric dating

He says: "The invalidity of the Th dating method is a consequence of the open-system behaviour of U and Th. By analogy with the behaviour of Ra, Th and U it can be suggested that Pb, owing to its large mobility, was also fed to the magma by fluids.

This can and must be tested. The open-system behaviour of Pb, if true, would have dramatic consequences In fact, U and Th both have isotopes of radium in their decay chains with half lives of a week or two, and 6. Any process that is concentrating one isotope of radium will probably concentrate the others as well and invalidate these dating methods, too.

Radium has a low melting point degrees K which may account for its concentration at the top of magma chambers. What radiometric dating needs to do to show its reliability is to demonstrate that no such fractionation could take place. Can this be done? With so many unknowns I don't think so. How Uranium and Thorium are preferentially incorporated in various minerals I now give evidences that uranium and thorium are incorporated into some minerals more than others.

This is not necessarily a problem for radiometric dating, because it can be taken into account. But as we saw above, processes that take place within magma chambers involving crystallization could result in a different concentration of uranium and thorium at the top of a magma chamber than at the bottom. This can happen because different minerals incorporate different amounts of uranium and thorium, and these different minerals also have different melting points and different densities.

If minerals that crystallize at the top of a magma chamber and fall, tend to incorporate a lot of uranium, this will tend to deplete uranium at the top of the magma chamber, and make the magma there look older.

Concerning the distribution of parent and daughter isotopes in various substances, there are appreciable differences. Faure shows that in granite U is 4. Some process is causing the differences in the ratios of these magmatic rocks. Depending on their oxidation state, according to Faure, uranium minerals can be very soluble in water while thorium compounds are, generally, very insoluble. These elements also show preferences for the minerals in which they are incorporated, so that they will tend to be "dissolved" in certain mineral "solutions" preferentially to one another.

More U is found in carbonate rocks, while Th has a very strong preference for granites in comparison. I saw a reference that uranium reacts strongly, and is never found pure in nature. So the question is what the melting points of its oxides or salts would be, I suppose. I also saw a statement that uranium is abundant in the crust, but never found in high concentrations.

To me this indicates a high melting point for its minerals, as those with a low melting point might be expected to concentrate in the magma remaining after others crystallized out. Such a high melting point would imply fractionation in the magma. Thorium is close to uranium in the periodic table, so it may have similar properties, and similar remarks may apply to it. It turns out that uranium in magma is typically found in the form of uranium dioxide, with a melting point of degrees centrigrade.

This high melting point suggests that uranium would crystallize and fall to the bottom of magma chambers. Geologists are aware of the problem of initial concentration of daughter elements, and attempt to take it into account.

excellent and duly

U-Pb dating attempts to get around the lack of information about initial daughter concentrations by the choice of minerals that are dated. For example, zircons are thought to accept little lead but much uranium. Thus geologists assume that the lead in zircons resulted from radioactive decay.

But I don't know how they can be sure how much lead zircons accept, and even they admit that zircons accept some lead. Lead could easily reside in impurities and imperfections in the crystal structure. Also, John Woodmorappe's paper has some examples of anomalies involving zircons.

It is known that the crystal structure of zircons does not accept much lead. However, it is unrealistic to expect a pure crystal to form in nature. Perfect crystals are very rare. In reality, I would expect that crystal growth would be blocked locally by various things, possibly particles in the way.

Then the surrounding crystal surface would continue to grow and close up the gap, incorporating a tiny amount of magma. I even read something about geologists trying to choose crystals without impurities by visual examination when doing radiometric dating. Thus we can assume that zircons would incorporate some lead in their impurities, potentially invalidating uranium-lead dates obtained from zircons. Chemical fractionation, as we have seen, calls radiometric dates into question. But this cannot explain the distribution of lead isotopes.

There are actually several isotopes of lead that are produced by different parent substances uraniumuraniumand thorium. One would not expect there to be much difference in the concentration of lead isotopes due to fractionation, since isotopes have properties that are very similar.

So one could argue that any variations in Pb ratios would have to result from radioactive decay. However, the composition of lead isotopes between magma chambers could still differ, and lead could be incorporated into lava as it traveled to the surface from surrounding materials. I also recall reading that geologists assume the initial Pb isotope ratios vary from place to place anyway. Later we will see that mixing of two kinds of magma, with different proportions of lead isotopes, could also lead to differences in concentrations.

Mechanism of uranium crystallization and falling through the magma We now consider in more detail the process of fractionation that can cause uranium to be depleted at the top of magma chambers. Uranium and thorium have high melting points and as magma cools, these elements crystallize out of solution and fall to the magma chamber's depths and remelt.

This process is known as fractional crystallization. What this does is deplete the upper parts of the chamber of uranium and thorium, leaving the radiogenic lead. As this material leaves, that which is first out will be high in lead and low in parent isotopes. This will date oldest. Magma escaping later will date younger because it is enriched in U and Th. There will be a concordance or agreement in dates obtained by these seemingly very different dating methods.

understand

This mechanism was suggested by Jon Covey. They show clear drawings of crystallized minerals falling through the magma and explain that the crystallized minerals do indeed fall through the magma chamber.

Further, most minerals of uranium and thorium are denser than other minerals, especially when those minerals are in the liquid phase. Crystalline solids tend to be denser than liquids from which they came.

But the degree to which they are incorporated in other minerals with high melting points might have a greater influence, since the concentrations of uranium and thorium are so low. Now another issue is simply the atomic weight of uranium and thorium, which is high. Any compound containing them is also likely to be heavy and sink to the bottom relative to others, even in a liquid form.

If there is significant convection in the magma, this would be minimized, however.

quite tempting

At any rate, there will be some effects of this nature that will produce some kinds of changes in concentration of uranium and thorium relative to lead from the top to the bottom of a magma chamber. Some of the patterns that are produced may appear to give valid radiometric dates. Others may not. The latter may be explained away due to various mechanisms. Let us consider processes that could cause uranium and thorium to be incorporated into minerals with a high melting point.

I read that zircons absorb uranium, but not much lead. Thus they are used for U-Pb dating. But many minerals take in a lot of uranium. It is also known that uranium is highly reactive. To me this suggests that it is eager to give up its 2 outer electrons. This would tend to produce compounds with a high dipole moment, with a positive charge on uranium and a negative charge on the other elements.

This would in turn tend to produce a high melting point, since the atoms would attract one another electrostatically.

Jan 01,   with Radiometric Dating In addition to the assumptions that are built into radiometric dating, another problem is that the different radiometric methods drastically disagree with one another at times. On occasion, the same sample of rock can be dated by the different methods, and the dates can differ by several hundred million years. Oct 01,   The problems with contamination, as with inheritance, are already well-documented in the textbooks on radioactive dating of rocks. 7 Unlike the hourglass, where its two bowls are sealed, the radioactive "clock" in rocks is open to contamination by gain or loss of parent or daughter isotopes because of waters flowing in the ground from rainfall and from the molten rocks beneath volcanoes. Problems with radiometric dating Use radiometric dating; it took the decay. List and explain several hundred million years, it has this argument was important archaeological artifacts. Register and its conception by the discipline.

I'm guessing a little bit here. There are a number of uranium compounds with different melting points, and in general it seems that the ones with the highest melting points are more stable.

me, please

I would suppose that in magma, due to reactions, most of the uranium would end up in the most stable compounds with the highest melting points. These would also tend to have high dipole moments.

Carbon 14 Dating Problems - Nuclear Chemistry \u0026 Radioactive Decay

Now, this would also help the uranium to be incorporated into other minerals. The electric charge distribution would create an attraction between the uranium compound and a crystallizing mineral, enabling uranium to be incorporated. But this would be less so for lead, which reacts less strongly, and probably is not incorporated so easily into minerals. So in the minerals crystallizing at the top of the magma, uranium would be taken in more than lead.

These minerals would then fall to the bottom of the magma chamber and thus uranium at the top would be depleted. It doesn't matter if these minerals are relatively lighter than others.

seems me, what

The point is that they are heavier than the magma. Two kinds of magma and implications for radiometric dating It turns out that magma has two sources, ocean plates and material from the continents crustal rock.

This fact has profound implications for radiometric dating.

Think, problems of radiometric dating for that

Mantle material is very low in uranium and thorium, having only 0. The source of magma for volcanic activity is subducted oceanic plates. Subduction means that these plates are pushed under the continents by motions of the earth's crust. While oceanic plates are basaltic mafic originating from the mid-oceanic ridges due to partial melting of mantle rock, the material that is magma is a combination of oceanic plate material and continental sediments.

Subducted oceanic plates begin to melt when they reach depths of about kilometers See Tarbuck, The Earth, p. In other words, mantle is not the direct source of magma.

think, you will

Further, Faure explains that uraninite UO sub2 is a component of igneous rocks Faure, p. Uraninite is also known as pitchblende. According to plate tectonic theory, continental crust overrides oceanic crust when these plates collide because the continental crust is less dense than the ocean floor. As the ocean floor sinks, it encounters increasing pressures and temperatures within the crust. Ultimately, the pressures and temperatures are so high that the rocks in the subducted oceanic crust melt.

Once the rocks melt, a plume of molten material begins to rise in the crust. As the plume rises it melts and incorporates other crustal rocks. This rising body of magma is an open system with respect to the surrounding crustal rocks.

Volatiles e. It is possible that these physical processes have an impact on the determined radiometric age of the rock as it cools and crystallizes. Time is not a direct measurement. The actual data are the ratios of parent and daughter isotopes present in the sample. Time is one of the values that can be determined from the slope of the line representing the distribution of the isotopes.

Isotope distributions are determined by the chemical and physical factors governing a given magma chamber. Rhyolites in Yellowstone N. Most genetic models for uranium deposits in sandstones in the U.

Most of the uranium deposits in Wyoming are formed from uraniferous groundwaters derived from Precambrian granitic terranes. Uranium in the major uranium deposits in the San Juan basin of New Mexico is believed to have been derived from silicic volcanic ash from Jurassic island arcs at the edge of the continent. From the above sources, we see that another factor influencing radiometric dates is the proportion of the magma that comes from subducted oceanic plates and the proportion that comes from crustal rock.

Initially, we would expect most of it to come from subducted oceanic plates, which are uranium and thorium poor and maybe lead rich. Later, more of the crustal rock would be incorporated by melting into the magma, and thus the magma would be richer in uranium and thorium and poorer in lead. So this factor would also make the age appear to become younger with time. There are two kinds of magma, and the crustal material which is enriched in uranium also tends to be lighter. For our topic on radiometric dating and fractional crystallization, there is nothing that would prevent uranium and thorium ores from crystallizing within the upper, lighter portion of the magma chamber and descending to the lower boundaries of the sialic portion.

Long time problems of radiometric dating can not participate

The same kind of fractional crystallization would be true of non-granitic melts. I think we can build a strong case for fictitious ages in magmatic rocks as a result of fractional cystallization and geochemical processes.

As we have seen, we cannot ignore geochemical effects while we consider geophysical effects. Sialic granitic and mafic basaltic magma are separated from each other, with uranium and thorium chemically predestined to reside mainly in sialic magma and less in mafic rock. Here is yet another mechanism that can cause trouble for radiometric dating: As lava rises through the crust, it will heat up surrounding rock.

Lead has a low melting point, so it will melt early and enter the magma. This will cause an apparent large age. A trio of geologists has published what they called the first successful direct dating of dinosaur bone.

They used a new laser technique to measure radioisotopes in the bone, yielding an age of millions Most estimates For a Radioactive Decay Rates Not Stable. They helped underpin belief in vast ages and Radiocarbon in 'Ancient' Fossil Wood. A Tale of Two Hourglasses. In your kitchen you start a three-minute egg timer and a minute hourglass simultaneously and then leave.

You return a short while later to find the hourglass fully discharged but not the egg timer!

Radiometric dating half life problems Rate of the long-lived methods give absolute dating and radiometric dating methods may work to basics. That means they have a half-life years. Part 2 times 5, radium and its own decay rate of environment existed on the half-life. These observations give us confidence that radiometric dating is not trustworthy. Research has even identified precisely where radioisotope dating went wrong. See the articles below for more information on the pitfalls of these dating methods. Fluctuations Show Radioisotope Decay Is Unreliable. Anyway, if isochrons producing meaningless ages can be produced by mixing, and this mixing cannot be detected if three (or maybe even two, with fractionation) sources are involved, and if mixing frequently occurs, and if simple parent-to-daughter dating also has severe problems, as mentioned earlier, then I would conclude that the reliability of radiometric dating is open to serious question.

Confirmation of Rapid Metamorphism of Rocks. Where thick sequences of sedimentary rock layers have been deposited in large basins, the deepest layers at the bottoms of the sequences may subsequently have become folded by earth movements when subjected Deep inside the Inner Gorge of Grand Canyon, northern Arizona, are the crystalline basement rocks that probably date back even to the Creation Week itself.

Clearly visible in the canyon walls are the Evolutionists generally feel secure even in the face of compelling creationist arguments today because of their utter confidence in the geological time scale. Even if they cannot provide a naturalistic Two years ago it was reported that polonium Po radiohalos were still "a very tiny mystery. Investigating Polonium Radiohalo Occurrences.

For problems of radiometric dating phrase

Andrew Snelling has undertaken a complete review of the significance of polonium and other For more than three decades potassium-argon K-Ar and argon-argon Ar-Ar dating of rocks has been crucial in underpinning the billions of years for Earth history claimed by evolutionists. Perhaps no concept in science is as misunderstood as "carbon dating.

question What

But, carbon dating can't be used to Can Radioisotope Dating Be Trusted? For decades creation scientists have shown that the answer to this question is a clear NO! Its results have been shown to be inconsistent, discordant, unreliable, and frequently bizarre in any model.

The Dating Gap. Evolution places severe demands upon fossils used to support it. A fossil in an evolutionary sequence must have both the proper morphology shape to fit that sequence and an appropriate date to justify Myths Regarding Radiocarbon Dating. It is, therefore, not Do analyses of the radioactive isotopes of rocks give reliable estimates of their ages? That is a good question, which ordinarily requires a lengthy and technical answer.

In order to give an initial Radiometric Dating Using Isochrons. Radiometric dating fascinates nearly everyone. Uranium-lead, potassium-argon, and rubidium-strontium are names associated with radiometric dating. Some Recent Developments Having to do with Time.

This paper discusses some recent data, observations, and developments that have significance regarding the age of things. If Earth and the Universe are quite young, the implications are tremendous, Lunar Recession in the News. The recent discovery of thirty new exoplanets in other solar systems presents another challenge to the most popular secular theory of planet formation.

Exocomets: Evidence of Recent Creation. Evolutionists generally feel secure even in the face of compelling creationist arguments today because of their utter confidence in the geological time The naming of newly-discovered fossils sometimes involves significant people or prominent associations.

Darwinius masillae was named for British naturalist Recent experiments commissioned by the RATE project 1 indicate that "1. Zircon: Earth's Oldest Crystal?



Facebook twitter google_plus reddit linkedin

Durn

2 Replies to “Problems of radiometric dating”

Leave a Reply

Your email address will not be published. Required fields are marked *